
Inference in Semi-Markov Models with Panel Data

Cason Wight

A selected project submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Richard L. Warr, Chair
Natalie J. Blades

Robert A. Richardson

Department of Statistics

Brigham Young University

April 2021

Copyright © 2021 Cason Wight

All Rights Reserved

ABSTRACT

Inference in Semi-Markov Models with Panel Data

Cason Wight
Department of Statistics, BYU

Master of Science

Semi-Markov processes model waiting times and transition probabilities for multi-
state scenarios. In many applications, data are collected at intermittent points in time where
the state of a process is observed. These observation times do not show the true times or
paths of transitions. Intermittently observed measurements such as these are known as panel
data. Our purpose is to estimate the parameters of a semi-Markov model with panel data.
The state-of-the-art technique uses a stochastic EM algorithm for inference. Two setbacks
to this method are sampling inefficiency and slow convergence. We propose improvements
to this method by leveraging properties of semi-Markov processes.

Keywords: Markov models, panel data, stochastic process, likelihood, FFT, EM algorithm

ACKNOWLEDGMENTS

I want to first thank my wife Megan for continually supporting me through this

project and the program. I also want to acknowledge how helpful and kind both Dr. Warr

and Dr. Hartman have been throughout my time at BYU. As teachers, mentors, and friends,

they have made me feel excited and confident as I make school and life decisions. Lastly,

I would like to thank Adam, Brandon, Daniel, and Devin for providing feedback and com-

radery over the past few years.

CONTENTS

Contents . iv

1 Introduction . 1

1.1 Literature Review . 4

2 Methodology . 7

2.1 Improved Stochastic Expectation-Maximization Algorithm 8

2.2 Computation via the FFT . 14

3 Results . 17

3.1 Preliminary Simulation Study . 17

3.2 Diabetic Retinopathy Study . 18

4 Discussion . 23

4.1 Future Work . 24

Bibliography . 27

Appendices . 31

Appendix A: Code . 33

iv

chapter 1

INTRODUCTION

Multistate statistical models are vital in modeling many processes. One area that gains

particular benefit from these models is disease progression. The medical profession has cat-

egorized significant states for diseases such as cancer, Alzheimer’s, Parkinson’s, and chronic

kidney disease to name just a few. These categorizations naturally map to states in a model.

One challenge that arises from this type of model is that patients are rarely observed contin-

uously. The state of a patient is typically known only at appointments or other intermittent

observation times; data observed at intermittent intervals like this are known as panel data.

With the incomplete and censored observations that are so natural in a medical setting,

researchers should use as much information from the collected data as possible.

One common multistate model is a semi-Markov Process (SMP). A Markov process is

a finite state process where the current state is the only relevant information affecting future

states or sojourn times. This characteristic is known as the memoryless property. The

memoryless property of Markov models require exponentially distributed sojourn times. An

SMP generalizes the concept of a Markov process to include any continuous-time distribution

for sojourn times. This generalization reduces the memoryless property to hold only at times

of transition. Thus, in SMPs, both the current state and the time since the last transition

affect future movement.

As a simple example of an SMP, consider the multistate process shown in Figure 1.1.

In this SMP, there are four states. Forward movement along the states is possible. Backward

transitions are only available from state 2 to state 1 and from state 3 to state 2, making

state 4 an absorbing state. The arrows represent possible sojourn paths, each with their own

1

distribution. When a state has more than one possible out-transition path (such as paths

from state 2, in this example), there are probabilities associated with each possible path.

Figure 1.1: Simple 4-state semi-Markov Process of diabetic retinopathy progression, in-
troduced in Marshall and Jones (1995). State 1 represents no retinopathy, state 2 rep-
resents microaneurysms, state 3 represents intermediate background retinopathy, state 3
represents preproliferative retinopathy, and state 4 represents preproliferative and prolifer-
ative retinopathy. State 4 is considered an absorbing state because transitions out of this
state are not possible and/or modeled.

In this paper, we are particularly interested in SMPs as they relate to medical pa-

tients, but this work could be generalized to other settings as well. We seek to solve for the

parameters of SMPs (both the transition probabilities and the parameters for the sojourn

time distributions) using only panel data. Given parameter estimates, many useful quanti-

ties can be calculated. Some examples include mortality rates after some number of years,

expected time until reaching some state, or probability of disease progression, among many

others. The proper calculation of these quantities is important to clinicians and insurers,

and thus the parameter estimation must be sound.

We focus on inference for a SMP involving diabetic retinopathy patients, introduced in

Marshall and Jones (1995), whose SMP is shown by Figure 1.1. Diabetic retinopathy occurs

when high blood pressure damages blood vessels to the eyes, causing vision impairment.

The data we analyze come from 277 patients who had type I diabetes for at least 5 years.

Each patient had at least two visits at the University of Colorado Health Sciences Center.

At each visit, the patients’ state was observed. No retinopathy is represented by state 1,

microaneurysms are labeled state 2, intermediate background retinopathy is state 3, and

preproliferative/proliferative retinopathy is state 4. Proliferative retinopathy is an advanced

stage where new blood vessels are growing, which can cause permanent damage. In this work,

2

we model the progression of diabetic retinopathy by estimating the transition probabilities,

as well as the distributional parameters for all sojourn paths. Accurate estimates for the

probability of progression, distribution of progression time, and other quantities can help

give understanding for how diabetic patients’ retinopathy evolves over time.

Many modeling techniques for SMPs with panel data are constrained by simplifica-

tions, additional assumptions, and/or computational challenges. Several of these drawbacks

are detailed in the literature review. In numerous studies, the transition times from one

state to another are treated as known and having occurred on the date/time they were

documented, even though the transition truly occurred earlier. This assumes the inherently

‘incomplete’ data as ‘complete’ and introduces bias into a study. Other studies assume mini-

mal movement between panel observations. Due to the complexity introduced by incomplete

data, unrealistic assumptions such as these are often used to solve for the parameters of the

SMP. Medical researchers are especially adverse to biased inference and want to reduce the

number of model assumptions. Therefore we approach the problem with minimal assump-

tions which are: the process adheres to the semi-Markov property, the chosen parametric

models are correct, and the patients are mutually independent.

The state-of-the-art method, proposed by Aralis and Brookmeyer (2019), uses a

stochastic sampling procedure, coupled with the EM algorithm to estimate the parame-

ters of the SMP. The EM algorithm is a method for imputing missing data to estimate

desirable parameters through an iterative process. In this algorithm, each iteration starts by

assuming values for the parameters of interest. In the expectation step, these values are used

to calculate the expectations of the missing information (when state transitions occurred).

In the maximization step, the imputed transition times, calculated in the expectation step,

are used to obtain maximum likelihood estimates (MLEs) for the parameters of interest.

These new MLEs then feed in as the assumed parameters of the next iteration of the algo-

rithm. See Redner and Walker (1984) for an introduction to the EM algorithm. The Aralis

3

and Brookmeyer (2019) method uses rejection sampling of multistate trajectories to obtain

stochastic expectations of the missing data.

The stochastic EM method allows for flexible sojourn time distributions and produces

unbiased estimates; however, a major downside to this approach is the computational ineffi-

ciency. Because the expectation step is fully stochastic, the EM algorithm converges slowly.

Additionally, the sampling procedure produces abundant waste; this inefficiency can be exac-

erbated by inaccurate initial parameters estimates. In this work, we introduce improvements

to this method by employing convenient properties of the SMP. These improvements elim-

inate the inefficiencies of rejection sampling of patient trajectories with directly sampled

first-passage trajectories. The fully stochastic expectation is replaced by conditional ex-

pectations from the partial patient trajectories. By improving the current methodology, we

allow for the same flexibility in sojourn time distributions and maintain unbiased estimation.

The proposed method aims to reduce and bound computational time.

1.1 Literature Review

There have been many attempts to incorporate incomplete data in multistate models for sur-

vival data; most of these approaches approximate the likelihood function for the incomplete

observations. Some of these methods are presented here. Kryscio and Abner (2013) sum-

marize the typical problems that are encountered with real semi-Markov data (especially

medical). Kalbfleisch and Lawless (1985) define an approach to approximating parame-

ters of a Markov model with panel data using direct maximum likelihood estimation. This

method includes implementation of covariates. An R package has been developed by Jackson

(2011) that fits a Markov model based on this approach. Lebreton and Cefe (2002) consider

multistate models for capture-recapture data where an individual can transit to more than

one state between captures. With the assumption that transition times are known, Yau

and Huzurbazar (2002) incorporates multiple state transitions between observation periods.

Foucher et al. (2007) modeled incomplete data with some restrictions on the shape of the

4

hazard function. Ferguson et al. (2012) created a package in R that estimates multi-state

models using a non-parametric paradigm. The package works with either panel observations

or exact transition times.

Many have also worked to solve the problem in an SMP model with panel data.

Steps have been made towards a robust solution, but most solutions rely heavily on strict

assumptions or inefficient sampling. The approach of Chen and Tien (2004) includes a

pseudo likelihood approach when transition times are incomplete. Gentleman et al. (1994)

consider panel data with some additional restrictions. Kang and Lagakos (2007) propose

a direct maximum likelihood approach to estimating semi-Markov parameters, by looking

at probabilities for the number of transitions between panel points. This method requires

that one or more transitions be modeled using an exponential distribution; even with this

simplification, the calculations are challenging and left to the modeler. A likelihood function

approach that incorporates interval censoring has been established by Foucher et al. (2010),

but requires the assumption of Weibull-distributed movement between states. Lange and

Minin (2013) assume a latent Markov model, with multiple latent states mapping to each

observed state. The latent structure involves phase-type distributions (see Asmussen et al.

(1996) for more on phase-type distributions), which have a tractable likelihood function for

panel data. They do not always yield identifiable parameters for the SMP. Titman (2014)

also uses phase-type distributions to get a tractable likelihood to estimate the parameters of

a semi-Markov model. A direct maximum likelihood approach has been established in Wei

and Kryscio (2016), but assumes Weibull or Exponentially distributed transitions and re-

quires quasi-Monte Carlo techniques for high-level integrals. Another method introduced by

Mohammadi (2020) has a partial likelihood approach, but also assumes Weibull or Gamma-

distributed sojourn times. Aralis and Brookmeyer (2019) propose a stochastic EM approach

to finding the likelihood. We consider this the state-of-the-art method for incorporating

panel data in SMPs and will discuss it in more detail in Section 2.1.

5

chapter 2

METHODOLOGY

The solution introduced in this paper improves the SEM methodology proposed by Aralis

and Brookmeyer (2019). This approach iterates between filling in the “incomplete” data

implied by the panel data and producing converging estimates for the parameters of the

SMP.

An SMP is a generalization of a Markov process, relaxing the requirement of expo-

nentially distributed sojourn times. Here, we closely follow the definition of SMP given by

Kulkarni (2016). Consider a multistate process, {Z(t), t ≥ 0}, with S possible states. This

process begins in state Z0 at time t = 0. This process remains in Z0 for some sojourn time,

Y1, at which it transitions into state Z1. This continues generally for all Zm, where the

process arrives in state Zm+1 after sojourn time Ym+1, m ≥ 0. At any given point in time

t ≥ 0, the state of the process is Z(t) ∈ {1, . . . , S}. Let t′m =
∑m

i=1 Yi be the time of the

mth transition for a process. This process is called a SMP if the following holds:

Definition 1 (Semi-Markov Process) The stochastic process

{Z(t), t ≥ 0} is SMP if it has a finite state space S and the following holds for all

{Z0, (Zm.Ym)},m ≥ 1:

Pr
(
Z(t′m+1) = j, Ym+1 ≤ t|

(
Z(t′m) = i, Ym

)
,
(
Z(t′m−1), Ym−1

)
, . . . , (Z(0))

)
= Pr

(
Z(t′1) = j, Y1 ≤ t| (Z(0) = i)

)
, ∀ i, j ∈ {1, 2, . . . , S}.

(2.1)

This definition allows sojourn times between states to follow any continuous-time

distribution. For inference on SMPs with panel data, we appeal to many useful properties

of the SMP.

7

2.1 Improved Stochastic Expectation-Maximization Algorithm

The current method alters the expectation maximization (EM) algorithm, substituting the

expectation calculation with a fully stochastic expectation step. Given only panel data,

the true transition times between states are unknown. The transition path is also unknown.

There is no current closed-form solution for the expectation of the transition path and times,

given the panel data. The current method takes parameter estimates from the maximization

step and randomly generates semi-Markov process data, using these parameters, until they

have samples that would produce the same panel data as observed, given the panel observa-

tion times. The accepted samples are taken as true, fully observed transitions and replace

expectation calculations. With complete data, MLEs are easily obtained for all parameters

of the semi-Markov model. The parameter estimates of the SEM algorithm converge as the

number of samples for each panel set increases.

The proposed method reduces the stochastic variation and limits the excessive sam-

pling of the previous approach, at the cost of more calculation. Instead of generating fully

random transition sets, this method appeals to the properties of semi-Markov models to

generate alternative types of samples.

This paper will introduce the method in two parts: the expectation step and the

maximization step. Before providing details, a few important notational and computational

conventions need to be presented. These definitions are provided by Warr and Collins (2015)

and shown in Table 2.1; the reader should refer to this work for details on how to compute

the various quantities of interest.

In an SMP, both the transition probability matrix p and the sojourn time distribution

parameters β are estimated. Even when β is unknown, distributional families fi,j(y; β) are

assumed ∀ i, j ∈ {1, 2, . . . , S}. In an SMP, the available sojourn paths are also assumed

(that is, the set of pairs (i, j) : pi,j 6= 0). With known p and β, all calculations in Table 2.1

are available.

8

Table 2.1: Notation for SMP Quantities. *Assumes that patient is in state i at time 0.

S The number of states in the SMP
Z(y) The state of a patient at time y
pi,j *The probability that the next state of a patient will be j
fi,j(y) *The PDF of the direct sojourn time into state j at time y

Pi,j(t)
Pr (Z(t) = j|Z(0) = i)
*The probability the patient is in state j at time t

Gi,j(y)

Pr (Nj(y) > 0|Z(0) = i)

*The CDF of first-passage movement into state j at time y

gi,j(y)

d
dy

Pr (Nj(y) > 0|Z(0) = i)

*The PDF of first-passage movement into state j at time y

g
(k)
i,j (y)

g
(k)
i,j (y) = gi,j(y) ? [gj,j(y)]?(k−I[i=j]) , k ∈ {0, 1, 2, . . . }

*The PDF of k-passage movement into state j at time y

qi,j(y)

pi,jfi,j(y)

*The transmittance of the direct passage into state j at time y

Hi,i(y)

∫ y
0

∑S
j=1 qi,j(ξ)dξ

*The probability that the patient has transitioned out of state i by time y

In the SEM algorithm, p and β are assumed known in each stochastic expectation

step. In the first iteration, these parameters are initialized by some starting guess, which

ideally would be close to the final parameter estimates. p and β are estimated in the

maximization step at each iteration. This algorithm continues until the parameter estimates

converge. In our proposed method, the stochastic expectation step may need to include

incrementally more samples to achieve convergence, similar to the existing approach.

Expectation Step

With the SEM algorithm and necessary SMP calculations introduced, we now suggest an

improved stochastic expectation sampling procedure. With panel data, each patient’s ob-

servation times, tn, and observed states, zn =

[
Z(tn,1), Z(tn,1), . . . , Z(tn,Mn)

]′
, are used to

obtain a set of exact transition times t′n, corresponding to the times of arrival into the states

observed by zn. The transition times t′n are calculated as an expectation. Because the tran-

sition path is unknown, we partially sample this path. Instead of full trajectories, we sample

9

the number of arrivals of the patient to state zn,m between the two observation times tn,m−1

and tn,m.

Consider again the SMP of Figure 1.1. Take the simple example of a patient where

z1 =

[
1, 2

]′
and t1 =

[
0, t

]′
. The patient may have had an appointment at time 0, when

a medical issue was diagnosed, and another appointment at time t, when the issue was

observed to have progressed. It is known that there was at least one transition from state

1 to state 2 between time 0 and time t, but the path is unclear. Figure 2.1 displays some

of the possible trajectories of the patient between the two observation times. Another way

of looking at the trajectory is that there is a known direct transition from z1,1 to z1,2, but

an unknown number, k1,1, of succeeding loops from z1,2 back into z1,2 between time 0 and

time t. We outline a sampling procedure for the number of first-passage loops, kn,m, for each

panel observation m of each patient n.

Figure 2.1: With the SMP given in Figure 1.1 and a single patient with panel data z1 =[
1, 2
]′

and t1 =
[
0, t
]′

, there are many possible paths that the patient could have taken.
Each involve one first-passage (direct, in this case) transition from state 1 to state 2 and
k ∈ {0, 1, 2, . . . } first–passage transitions from state 2 back into state 2.

With the partial transition path known, the expected times of the final transitions

t′ before the observation times t are calculable. The convolutional sum of a first-passage

distribution from a state i into state j, with k first-passage distribution loops from state j

back into state j is known as a k-passage distribution from state i to state j. Thus, the result

of the stochastic expectation step is a set of sampled k-passages and the expected times t′

of these k-passages, from the k-passage distributions. An increasing number of samples Φ,

10

for each patient are obtained as the SEM algorithm iterates. We recommend setting the

number of samples, Φ, to the iteration number of the algorithm. Thus on the first iteration

of the SEM algorithm, each patient receives 1 sampled expectation (kn,φ, t
′
n,φ), and on the

second each receives 2, and so on. In many cases, the algorithm may converge even if Φ

remains at 1.

Before outlining the sampling procedure, there is one adjustment to the SMP that

must be made for each panel observation pair. For a patient n, the expected k-passage

transition times t′n represent the expected times of the final transitions before the observed

panel times tn. Thus, when a final transition time t′m−1 is sampled, the implicit restriction

is that there are no additional state transitions between time t′m−1 and tm. Figure 2.2 shows,

by the shaded region, when the patient is restricted from movement. It is necessary to

incorporate this requirement when obtaining the stochastic expectation for panel observation

m. Thus when sampling the number of loops and calculating the final time for the subsequent

kn,φ,m+1-passage movement, the outward sojourn time distributions from zn,m should be

truncated such that they are greater than tn,m − t′n,φ,m.

Figure 2.2: After obtaining the expected sojourn time t′m−1, the patient’s sampled trajectory
should have no movement between this time until after the panel time tm−1. Thus all outward
transitions from zm−1 are truncated.

For the stochastic expectation procedure, first-passage distributions are needed. It is

inappropriate to simply truncate the passage-distributions when calculating passage proba-

bilities or expected transition times. We propose adding an additional state to the existing

SMP that mirrors the exit state of interest, zn,m−1. This new state has the same departing

transition paths and probabilities as the exit state, but the sojourn times are truncated to

be above tn,m − t′n,φ,m; there are no in-transitions for the new state. The S × S transition

11

probability matrix would now become a S + 1 × S + 1 matrix. The departing transition

sojourn time distributions fi′,j(y) will be truncated as follows:

fi′,j(y) =
fi,j(y)I

[
y > tn,m − t′n,φ,m

]∫∞
tn,m−t′n,φ,m

fi,j(y)dy
. (2.2)

Consider the example where zn,m−1 = 2 and zn,m = 1. Suppose that we have already

performed the stochastic expectation step for the m−1 panel observation, so we already know

t′n,φ,m−1. We implicitly assume then that there are no transitions between time t′n,φ,m−1 and

tn,φ,m−1. Then in order to sample kn,φ,m and calculate t′n,φ,m, we would need to incorporate

this period of no movement. We will then append a new state to the existing SMP that

represents a state for zn,m−1 that includes a truncated sojourn time distribution. Figure 2.3

shows how the existing SMP would be adjusted, where dashed lines represent left-censored

transition distributions and the dashed circle is the additional state. If there is movement

back into and then out of state zn,m−1 before tn,m, the truncation would no longer be relevant.

Thus this additional state will have no inward paths.

Figure 2.3: The additional state resolves the truncation requirement involved in the stochas-
tic expectation procedure. The dashed circle represented the added state. There are no
inward transition paths into this state, and the outward transition paths are identical to
those of state zn,m = 2, with truncation on the departure transition distributions.

We append the current notation so that i′, the additional state, replaces state i, which

mirrors state i with no inward transitions and truncated departure distributions.

For the sampling procedure, let i = zn,φ,m−1, j = zn,φ,m, and ∆ = tn,m,φ−t′n,φ,m−1. The

convolutional sum of two density functions f(t) and g(t) is denoted (f?g)(t). The convolution

12

of a density function f(t), ` times, is denoted [f(t)]?`, thus for example, f(t)?f(t) = [f(t)]?2.

The k-passage distributions described above can then be defined as in Table 2.1. The sample

probabilities used to obtain kn,m,φ is then calculated as follows:

Pr
(
K = kn,φ,m|Z(t′n,φ,m−1) = i′, Z(tm,φ,m) = j

)
= Pr

(
K = kn,φ,m|Z(0) = i′, Z(∆) = j

)
=

Pr (K = kn,φ,m, Z(∆) = j|Z(0) = i′)

Pr (Z(∆) = j|Z(0) = i′)

=
Pr (K = kn,φ,m, Z(∆) = j|Z(0) = i′)∑∞
`=0 Pr (K = `, Z(∆) = j|Z(0) = i′)

,

(2.3)

where Pr (K = kn,φ,m, Z(∆) = j|Z(0) = i′) =
∫ ∆

0 g
(kn,φ,m)
i′,j (y) (1−Hj,j(∆− y)) dy.

As previously mentioned, all calculations in Table 2.1 are available when p and β are

known. The above probabilities are calculated using only these values, so the probabilities

defined in Equation 2.3 can be used for sampling kn,φ. Given the trajectory from zn,φ,m−1,

as well as the maximum sojourn time tn,φ− t′n,φ,m−1, the truncated k-passage can be used to

calculate the expected sojourn time yn,φ,m and then find the end time t′n,φ,m of the movement

before the panel observation time tn,φ,m:

t′n,φ,m = t′n,φ,m−1 + E(Yn,φ,m|t′n,φ,m < tn,φ,m, i, j, kn,φ,m, t
′
n,φ,m−1, tn,φ)

= t′n,φ,m−1 +

∫ ∆

0
yg

(kn,φ,m)

i′,j (y) (1−Hj,j(∆− y)) dy∫ ∆

0
g

(kn,φ,m)

i′,j (y) (1−Hj,j(∆− y)) dy

(2.4)

In the case that kn,φ,m is sampled as 0 and i = j, the expected time t′n,φ,m = t′n,φ,m−1 because

there was no transition sampled between these two observation times.

The incoming relevant pieces of information for the stochastic expectation step are the

assumed parameters of the SMP p and β, the sets of observation times {t1, t2, . . . , tN}, and

the sets of observed states {z1, z2, . . . , zN}. From these values, the number of first-passage

loops for each panel observation are sampled {k1,k2, . . . ,kN}. The sets of conditional ex-

pectations for the sampled k-passage transition times {t′1, t′2, . . . , t′N} are then calculated.

These two sets represent the stochastic expectations for the patients, and are used in the

maximization step to find MLEs for p and β.

13

Maximization Step

Given partial trajectories and expected sojourn times from the stochastic expectation step

of the SEM algorithm, MLEs can be calculated for the parameters of the SMP. There are

Φ sampled trajectory sets and expected time sets for each patient. Allowing once again for

i = zn,φ,m−1, and j = zn,φ,m, as well as ∆′ = t′n,m,φ − t′n,φ,m−1, the likelihood function for this

problem is then as follows:

L(p,β) =

N∏
n=1

Φ∏
φ=1

Mn∏
m=1

Pr
(
K = kn,φ,m|i′, j

)
g

(kn,φ,m)
i′,j (∆′)

[
1−Hj,j

(
tn,m,φ − t′n,φ,m

)]
. (2.5)

Maximizing the likelihood function provides parameters estimates for the next iteration of

the SEM algorithm. The SEM iterations continue until the parameters θ converge. We will

use the existing approach’s convergence criteria from Aralis and Brookmeyer (2019), which

is that the following hold for three consecutive iterations:

max
i


∣∣∣θ(r)
i − θ

(r−1)
i

∣∣∣∣∣∣θ(r−1)
i

∣∣∣+ δ1

 < δ2, (2.6)

where δ1 and δ2 are convergence parameters and r is the iteration index.

In the original SEM procedure, sampling the trajectories is computationally expen-

sive, while maximum likelihood estimation of parameters is simple. In the updated SEM

method, the maximum likelihood estimation is more burdensome, because all parameters

have to be estimated simultaneously, and the likelihood function evaluation can be compu-

tationally intense. The expectation step generates Φ sets of first-passage loops and times

of transition (kn,φ and t′n,φ) for each patient n. The maximization step then uses these

values, and obtains parameters that maximize the likelihood, shown by Equation 2.5. Upon

convergence, the latest maximum likelihood estimates of the algorithm give final parameter

estimates for the SMP.

2.2 Computation via the FFT

The method described in this work incorporates both truncation and censoring in the so-

journ time distributions. There is no general closed-form solution to the Laplace transform

14

or moment generating function of most truncated/censored distributions. Thus, when we

perform the convolutions necessary for many of the equations of Table 2.1, we numerically

estimate the transforms.

One computationally efficient approach is to discretize the sojourn time distributions

and then estimate their transforms using the Fast-Fourier Transform (FFT). The FFT is

widely available as a fast implementation of the discrete Fourier transform on most hard-

ware. Censoring and truncation in a discrete distribution are trivial. The FFTs of the

transitions can replace the Laplace transforms of the definitions in Warr and Collins (2015).

A benefit to this approach is the convenience of the inverse discrete Fourier transform in

a computational setting, as opposed to the more expensive methods of inverting a Laplace

transform. A downside to this approach is the discretization and truncation error of the

FFT. If a researcher has a predetermined maximum error, it is possible to select a trun-

cation point and discretization width such that the error will not exceed a predetermined

bound. For details on how to calculate the error bounds involved in convolutions with the

FFT, see Warr and Wight (2020). Because the FFT is fast, and the numerical error can be

managed, it is a suitable approach in this application. The pieces of this method that are

estimated via the FFT are the k-passage distributions g
(k)
i,j (y) and the function Hj,j(y), both

described in Table 2.1.

15

chapter 3

RESULTS

A simulation study is used to evaluate the accuracy and bias of the proposed improvements.

The SMP involved in this simulation study resembles the SMP of the diabetic retinopathy

application, mentioned in Chapter 1. The true parameters of this study are taken from a

simple exploratory analysis of the diabetic retinopathy data. After the simulation study, the

updated SEM method is applied to the original data.

3.1 Preliminary Simulation Study

The structure of the SMP involved in the simulation study is identical to that shown in

Figure 1.1. The sojourn times are gamma distributed, with the exact parameters shown in

Table 3.1. Transition data for 100 patients were simulated using this SMP. For each patient,

a random draw of observation times is used to convert the true transition data into panel

data. The observation times used in the simulation study are random draws from the panel

observation times of the actual diabetic retinopathy patients. The parameter estimates from

the updated SEM method are shown in Table 3.1 along with the true parameters used in

the simulation study.

As shown in Table 3.1, these results are promising. Most parameters estimates are

reasonable, and this is one simulation study on 100 patients. The estimate of the mean 1-

to-2 sojourn is the least accurate of the means (estimated 11.82 from a true mean of 18.23).

Both probability estimates are within 7% of the true parameters used in the simulation. Note

that only a single replicate is obtained in this simulation study. Future work in this project

will involve a comprehensive simulation study and analysis of bias. A more comprehensive

simulation study could also experiment with the effect of panel observation times on the

results.

17

Table 3.1: Results of a single simulation, where the true parameters are known. All sojourn-
time distributions are assumed gamma distributed.

Parameter True Value SEM Estimate
p21 .45 .52
p32 .82 .81
µ12 18.23 11.82
µ23 14.76 14.51
µ34 9.50 11.10
µ32 7.22 9.77
µ21 15.71 13.63
σ2

12 58.87 21.29
σ2

23 96.51 60.49
σ2

34 84.50 97.12
σ2

32 7.44 6.77
σ2

21 38.37 25.46

For these results, the parameters of δ1 = .001 and δ2 = .05 are used (taken from pre-

vious work). Additionally, we set Φ ≡ 1. Other applications may require Φ to increase with

each iteration for convergence to be achieved. The previous approach, under the specified

simulated conditions, has exaggerated sampling inefficiency that makes computation time

unknown. One of the benefits of the proposed method is a resolution to this issue.

3.2 Diabetic Retinopathy Study

After a simple simulation study, the proposed method is applied to the diabetic retinopathy

data. Many details on these data are included in Chapter 1. The data include information

on patients such as age, gender, blood pressure at time of appointment, and a few other

variables. A simple exploratory analysis of these data do not reveal any covariate to be

particularly interesting for inclusion in a semi-Markov model. Figure 3.1 shows that there is

no clear relationship between age, smoker status, or systolic blood pressure and the observed

time between different states for the patients. These plots do not represent true transition

times, but simply the naive panel observation time differences. In Marshall and Jones (1995),

age and gender were found to be significant covariates for inclusion in a Markov model for

these data, but these covariates are not included here.

18

Figure 3.1: Times between diabetic retinopathy states observed at appointments. In many
studies, these times would be used instead of utilizing all the information included in panel
data. None of the three covariates included in these plots appear to be particularly interesting
for estimating the model.

Using the methodology detailed in Section 2.1, the parameters of the SMP are es-

timated and shown in Table 3.2. The mean time for back-transitions (state 2 to state 1

or state 3 to state 2) was 8.43 years and 10.22 years. Retinopathy progression had mean

times of 8.97 years for no retinopathy to microaneurysms, 11.48 years for microaneurysms to

intermediate retinopathy, and 17.05 years for intermediate retinopathy to pre-proliferative

or proliferative retinopathy.

With the SMP parameters estimated, many interesting research questions can be

answered. This section will answer some of these questions; with these parameters, the

interested reader can refer to Warr and Collins (2015) and solve specific quantities that may

be of interest.

19

Table 3.2: Estimated parameters of the SMP for diabetic retinopathy progression shown
in Figure 1.1. As in the simulation study, the sojourn times are assumed to be gamma
distributed.

Parameter SEM Estimate
p21 .62
p32 .85
µ12 8.97
µ23 11.48
µ34 17.05
µ32 8.43
µ21 10.22
σ2

12 16.84
σ2

23 54.08
σ2

34 83.17
σ2

32 5.36
σ2

21 19.90

The first result included is the CDF of the first-passage movement between states.

This result shows how long it takes for a patient to move from no retinopathy to intermedi-

ate retinopathy, a microaneurysms patient to move to proliferative retinopathy, or any other

possible indirect or direct route. This also includes the time of leaving the current state and

arriving back in the same state (a microaneurysms patient transitioning back into microa-

neurysms, for example). These are shown in Figure 3.2. Notice that some are defective (such

as the 3-to-1 first-passage, for example). In these cases, G(∞) < 1. These paths are not

guaranteed to occur, and G(∞) reveals the probability of the trajectory ever occurring. The

mean times of these distributions are also shown in Figure 3.2, conditioned on that passage

movement actually occurring.

Another possible research question may concern the time-dependent state proba-

bilities. Time-dependent state probabilities represent the probability that a patient is in

a particular state at time t = t1, given some starting state at time t = 0. All of the

time-dependent state probabilities for years 0–100 are shown in Figure 3.3. Note that the

probabilities of being in state 4 are equal to the values shown in Figure 3.2; this is because

20

Figure 3.2: Estimated first-passage cumulative distribution functions between states. The
mean times are conditional on the state being reached. It should be noted that this figure is
extrapolating well beyond a reasonable range, because the data come from a relatively short
study period. These estimates are assuming that the model results are infallible.

state 4 is absorbing. Time-dependent state probabilities can help researchers understand

the risks of progression in diabetic retinopathy.

Figure 3.3: Estimated time-dependent state probabilities. These plots show the probability
of being in the specific states z(t) = j, given that a patient just arrived at some state
z(0) = i: Pr (z(t) = j|z(0) = i).

21

Other research questions can be easily answered, but a full analysis of the different

possible features of diabetic retinopathy progression is beyond the scope of this project.

22

chapter 4

DISCUSSION

Semi-Markov models are widely useful for processes involving state progression, especially

in the medical field. In practice, panel data make the estimation of these models difficult.

Many studies include limiting assumptions on sojourn time distributions, or assume that

data is complete, when it is not. The state-of-the-art stochastic EM approach proposed in

Aralis and Brookmeyer (2019) allows for parametric, unbiased estimation and fully flexible

sojourn time distributions. The downside to this method is the difficulty in convergence due

to the stochasticity and the infeasibility of the sampling procedure when the true param-

eters are unknown or patients have data from several appointments. When patients have

data from many appointments, producing a valid sample trajectory is increasingly difficult.

Additionally, if a patient has a strange set of panel observations (unexpected states or multi-

ple consecutive appointments), the sampling procedure struggles to produce valid stochastic

expectations. If the SEM algorithm begins with unrealistic parameter estimates, the time

to complete the initial expectation varies greatly and does not have an upper bound. In our

experience, this approach often leads to unending sampling attempts.

Our work proposes a method that relies on SMP properties to directly sample partial

patient trajectories and calculate expected movement times. If a patient has many appoint-

ments or an unexpected trajectory, the computation load is the same for each observation,

as opposed to the prior method. The proposed method is more robust to outlier patient

trajectories, additional appointments, or varying starting parameter estimates.

Panel data complicates the estimation procedure for semi-Markov models. The ex-

isting solution to this problem is both innovative and flexible, but due to the inconsistency

in computation time, we propose a more reliable approach. Even though the proposed ap-

23

proach has a more consistent computation time, the maximization step is still expensive.

As it stands, each likelihood function evaluation is a costly calculation. Throughout the

simulation study, the likelihood takes roughly 70 seconds to evaluate, on average, for 100

patients. Our SEM implementation includes parallel computing on 5 cores, each simulta-

neously evaluating the likelihood function when performing the maximization step. Under

these conditions, the diabetic retinopathy model was estimated in 42 hours. Parallel com-

puting could be expanded to many more cores. Even within a single likelihood evaluation,

the calculation of the contributions of the patients could be put on separate jobs. The

updated SEM algorithm still depends on choosing convergence parameters; changing these

values could also affect the total computation time.

Using the proposed methodology, this project fits a semi-Markov model on Diabetic

Retinopathy patient data. The parameters estimated by this approach enable the estimation

of the first-passage distributions and time-dependent state probabilities. These interesting

quantities are summarized in Figures 3.2 and 3.3. A variety of other quantities of interest

are calculable from the parameter estimates. In Marshall and Jones (1995), the diabetic

retinopathy data were originally modeled assuming exponentially distributed sojourn times.

The proposed method allows for much more flexibility in the sojourn time distributions; this

report analyzes the data assuming gamma-distributed sojourn times.

4.1 Future Work

There are many other steps that could be taken to improve this methodology. A next

step will be a full simulation study that explores bias under many different conditions, as

explained in Section 3.1. Other potential expansions to this simulation study might include

more patients per data set, changes to the average length of the intervals between panel

observations, or exploration of other sojourn time distributions.

If possible, a closed-form MLE for some of the parameters would help reduce the

dimensionality of the likelihood function. Currently, the diabetic retinopathy SMP has 12

24

parameters. Numerical maximum likelihood estimation on such a high dimensional problem

requires many evaluations of the likelihood function. This is the source of slow estimation

for the proposed method.

Currently, a closed-form tractable likelihood function on panel data is not available. It

may be possible to expand the likelihood function of Equation 2.5 to simultaneously include

all possible trajectories. The proposed likelihood only has a single piece that is sampled,

which is the number of end-state loops, k. If a new likelihood were obtained that included

all possible k, the EM estimation technique may avoided entirely and parameters could be

estimated through direct maximum likelihood.

25

BIBLIOGRAPHY

[1] Aralis, H., and Brookmeyer, R. (2019), “A stochastic estimation procedure for

intermittently-observed semi-Markov multistate models with back transitions,” Statistical

methods in medical research, 28, 770–787.

[2] Asmussen, S., Nerman, O., and Olsson, M. (1996), “Fitting phase-type distributions via the

EM algorithm,” Scandinavian Journal of Statistics, 419–441.

[3] Chen, P.-L., and Tien, H.-C. (2004), “Semi-Markov models for multistate data analysis with

periodic observations,” Communications in Statistics—Theory and Methods.

[4] Ferguson, N., Datta, S., and Brock, G. (2012), “msSurv: An R package for nonparametric

estimation of multistate models,” Journal of Statistical Software, 50, 1–24.

[5] Foucher, Y., Giral, M., Soulillou, J., and Daures, J. (2010), “A flexible semi-Markov model

for interval-censored data and goodness-of-fit testing,” Statistical Methods in Medical Re-

search, 19, 127–145.

[6] Foucher, Y., Giral, M., Soulillou, J.-P., and Daures, J.-P. (2007), “A semi-Markov model for

multistate and interval-censored data with multiple terminal events. Application in renal

transplantation,” Statistics in Medicine, 26, 5381–5393.

[7] Gentleman, R., Lawless, J., Lindsey, J., and Yan, P. (1994), “Multi-state Markov models for

analysing incomplete disease history data with illustrations for HIV disease,” Statistics in

Medicine, 13, 805–821.

[8] Jackson, C. H. (2011), “Multi-state models for panel data: the msm package for R,” Journal

of Statistical Software, 38, 1–29.

27

[9] Kalbfleisch, J., and Lawless, J. F. (1985), “The analysis of panel data under a Markov

assumption,” Journal of the American Statistical Association, 80, 863–871.

[10] Kang, M., and Lagakos, S. W. (2007), “Statistical methods for panel data from a semi-

Markov process, with application to HPV,” Biostatistics, 8, 252–264.

[11] Kryscio, R. J., and Abner, E. L. (2013), “Are Markov and semi-Markov models flexible

enough for cognitive panel data?” Journal of biometrics & biostatistics, 4.

[12] Kulkarni, V. G. (2016), Modeling and analysis of stochastic systems, Crc Press/Taylor and

Francis Group.

[13] Lange, J. M., and Minin, V. N. (2013), “Fitting and interpreting continuous-time latent

Markov models for panel data,” Statistics in Medicine, 32, 4581–4595.

[14] Lebreton, J.-D., and Cefe, R. P. (2002), “Multistate recapture models: modelling incomplete

individual histories,” Journal of Applied Statistics, 29, 353–369.

[15] Marshall, G., and Jones, R. H. (1995), “Multi-state models and diabetic retinopathy,” Statis-

tics in medicine, 14, 1975–1983.

[16] Mohammadi, K. A. (2020), “A Partial Likelihood Approach to Longitudinal Categorical

Data Using a Continuous Time Semi-Markov Chain Model,” UT School of Public Health.

[17] Redner, R. A., and Walker, H. F. (1984), “Mixture densities, maximum likelihood and the

EM algorithm,” SIAM review, 26, 195–239.

[18] Titman, A. C. (2014), “Estimating parametric semi-Markov models from panel data using

phase-type approximations,” Statistics and Computing, 24, 155–164.

[19] Warr, R. L., and Collins, D. H. (2015), “A comprehensive method for solving finite–state

semi–Markov processes,” International Journal of Simulation and Process Modelling, 10,

89–99.

28

[20] Warr, R. L., and Wight, C. J. (2020), “Error Bounds for Cumulative Distribution Func-

tions of Convolutions via the Discrete Fourier Transform,” Methodology and Computing

in Applied Probability, 22, 881–904.

[21] Wei, S., and Kryscio, R. J. (2016), “Semi-Markov models for interval censored transient

cognitive states with back transitions and a competing risk,” Statistical Methods in Medical

Research, 25, 2909–2924.

[22] Yau, C. L., and Huzurbazar, A. V. (2002), “Analysis of censored and incomplete survival

data using flowgraph models,” Statistics in Medicine, 21, 3727–3743.

29

APPENDICES

31

appendix a

CODE

library(optimParallel)
library(tidyverse)

options(scipen = 8)

Read in data (not publicly available)
diabetes <- read_tsv("Diabetic Ret Data.txt",

skip = 13,
col_types = cols(. default = "d"))

Get ids of patients
patient_ids <- diabetes %>%

pull(Subject) %>%
unique ()

Convert data to list of panel data
panel_data <- lapply(patient_ids ,

function(id) {
diabetes %>%

setNames(tolower(colnames (.))) %>%
filter(subject ==id) %>%
select(state , time) %>%
as.matrix(ncol =2) %>%
t()})

Set up support points
N <- 2^18
trunc <- 4000
supp <- seq(from = 0, to = trunc , length.out = N)

Function for obtaining the truncated k-passage distributions
get_G <- function(i, j, time_no_move , k,

first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars){

The paths to be truncated
ghost_transitions <- paste0(i, which(pars$prob_mat[i,] != 0))

Distributions of the paths to be truncated
dists_to_trunc <- lapply(ghost_transitions ,

function(x) {
get(paste0("f", x))
})

Truncated distributions
dists_trunc <- lapply(dists_to_trunc ,

function(dist){
dist * (supp > time_no_move)
})

33

If the total truncated probabilities , sum to <0, this is a fix
for(ghost_option in 1: length(dists_trunc)){

if(sum(dists_trunc [[ghost_option]]) <=0) {
dists_trunc [[ghost_option]] <- rep(1,N)

}
}

Truncated distributions with normalization
fs_trunc <- lapply(dists_trunc ,

function(dist_trunc) {
dist_trunc / sum(dist_trunc)

})

FFT of truncated distributions
fts_trunc <- lapply(fs_trunc , function(f_trunc) fft(f_trunc))

Probabilities of the truncated path(s)
prob_paths <- pars$prob_mat[i,which(pars$prob_mat[i,] != 0)]

The path ends from the truncated distributions
after_ghosts <- as.numeric(sapply(ghost_transitions ,

function(path){substr(path ,2,2)
}))

ghost_paths_to_end <- list()

We will incorporate the truncated transitions into the k-passage distribution
for(ghost_option in 1: length(fts_trunc)){

Transmittance for the truncated path
ghost_transition <- prob_paths[ghost_option]*

fts_trunc[[ghost_option]]

Ending state for the truncated path
after_ghost <- after_ghosts[ghost_option]
transition_to_end <- first_pass_ft[after_ghost ,j,]

if(i==j){
if(k==0){

No movement
ghost_path_to_end_ft <- fft(c(1,rep(0,N-1)))

} else{
Movement , but back into starting state
k <- k-1
ghost_path_to_end_ft <- ghost_transition *

transition_to_end *
(first_pass_ft[j,j,]^k)

k <- k+1
}

} else{
if(after_ghost==j){

Truncated path ends with the same state as the ending state
ghost_path_to_end_ft <- ghost_transition *

(first_pass_ft[j,j,]^k)
} else{

Truncated path ends not with the same state as the
ending or the starting state
ghost_path_to_end_ft <- ghost_transition *

transition_to_end *
(first_pass_ft[j,j,]^k)

}
}

34

Converting back to time domain (from transform domain)
ghost_path_to_end <- Re(fft(ghost_path_to_end_ft , inverse=TRUE))/N

ghost_paths_to_end[[ghost_option]] <- ghost_path_to_end
}

Weighting across the different truncation path options
G <- ghost_paths_to_end %>%

unlist () %>%
matrix(ncol=length(ghost_transitions)) %>%
rowSums ()

return(G)
}

Function for obtaining the probability of leaving state j
get_H <- function(j, total_time ,

first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars){

The potential outward paths and associated probabilities from j
out_paths <- which(pars$prob_mat[j,]!=0)
prob_paths <- pars$prob_mat[j,out_paths]

The shapes and rates of the gamma -distributed paths
shapes <- sapply(paste0("a",j,out_paths),

function(name){
pars[[name]]
})

rates <- sapply(paste0("b",j,out_paths),
function(name) {

pars[[name]]
})

Probability of taking the different paths by time t
all_PMFs <- sapply (1: length(shapes),

function(x) {
prob_paths[x]*
pgamma(total_time -supp[supp <total_time],

shapes[x],rates[x])
}) %>%

matrix(ncol = length(out_paths))

Summing across all possible paths
H <- rowSums(all_PMFs)
return(H)

}

Function for obtaining Pr(K=k)
get_probs <- function(i=1, j=2, time_no_move=10, total_time=50,

first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 , pars = pars){

probs <- c()

Obtaining the H piece of the Pr(K=k) equation (not dependent on k)
if(j!=4){

H <- get_H(j, total_time , first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)

} else{

35

prob_0 <- 1
names(prob_0) <- 0
return(prob_0)

}

k <- 0
KEEP_GOING <- TRUE

We will continually calculate Pr(K=k, Z(t)’=j | Z(0)=i) until it
is sufficiently small
while(KEEP_GOING){

The G portion of Pr(K=k) equation (dependent on k)
G <- get_G(i, j, time_no_move , k, first_pass_ft = first_pass_ft ,

f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)

The probs vector gets filled in until Pr(K=k, Z(t)’=j | Z(0)=i)
Is very small
probs[k+1] <- sum(G[supp <total_time]*(1-H))
KEEP_GOING <- probs[k+1]/max(probs) > 1/1000
if(is.na(KEEP_GOING)){

KEEP_GOING <- TRUE
}
k <- k+1
We will only get a maximum of 40 loops (very big for this case)
if(k == 40) {

KEEP_GOING <- FALSE
}

}

probs <- pmax(0,probs)

if(k >=40){
probs <- rep(1,40)/40

}

Rename and normalize
names(probs) <- 0:(length(probs) -1)
return(probs / sum(probs))

}

Get the function for obtaining E(t|K=k), called get_t_prime ()
get_t_prime <- function(i = 1, j = 2, num_loops=0, time_no_move = 10,

total_possible_time = 100,
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars){

H portion of E(t’) equation
if(j!=4){

H <- get_H(j, total_possible_time ,
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)

} else{
H <- 0

}

G portion of E(t’) equation
G <- get_G(i, j, time_no_move , num_loops ,

first_pass_ft = first_pass_ft ,

36

f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)

Calculating the conditional mean
cond_mean_numerator <- supp[supp <total_possible_time] *

G[supp <total_possible_time] *
(1-H)

cond_mean_denomenerator <- sum(G[supp <total_possible_time] * (1-H))

return(sum(cond_mean_numerator / cond_mean_denomenerator))
}

The specific g(t’) values for the likelihood function
get_g_val <- function(i = 1, j = 2, num_loops=0, time_no_move = 10,

total_time = 100, time = 50,
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars){

index_val <- max(which(supp < time))
G <- get_G(i, j, time_no_move , num_loops ,

first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)[index_val]

log(max(G, .Machine$double.eps))
}

The specific H(t-t’) values for the likelihood function
get_h_val <- function(i = 1, j = 2, num_loops=0, time = 50,

time_no_move = 10, total_time = 100,
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars){

index_val <- max(which(supp < time))

out_paths <- which(pars$prob_mat[j,]!=0)
prob_paths <- pars$prob_mat[j,out_paths]

shapes <- sapply(paste0("a",j,out_paths),
function(name){

pars[[name]]
})

rates <- sapply(paste0("b",j,out_paths),
function(name) {

pars[[name]]
})

if(j == 4){
H <- 0

} else{
H <- sum(prob_paths * pgamma(total_time - time , shapes , rates))

}

log(max(1-H, .Machine$double.eps))
}

37

Function that takes patient panel data and samples k and calculates the
expectation of t’

get_single_expectation <- function(patient_data = panel_data [[8]],
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars){

We know z and t
z <- patient_data[1,]
t <- patient_data[2,]

We want to know t_prime and k
t_prime <- rep(0,length(t))
k <- t_prime

We will look at each panel observation pair
for(m in seq_along(z)[-1]){

Initial setup for the given panel observation pair
time_before_panel <- t[m-1] - t_prime[m-1]
elapsed_time <- t[m] - t_prime[m-1]
start_state <- z[m-1]
end_state <- z[m]

If not in the absorbing state , find the probabilities for each k, and sample
k

if(end_state != 4){
probs_of_k <- get_probs(i=start_state , j=end_state ,

time_no_move=time_before_panel ,
total_time=elapsed_time ,
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)

k[m] <- sample(x=as.numeric(names(probs_of_k)),
size = 1, prob = probs_of_k)

} else{
k[m] <- 0

}

Using k, get the expectation for t’
if(k[m] == 0 & end_state ==start_state){

t_prime[m] <- t_prime[m-1]
} else{

t_prime[m] <- t_prime[m-1] +
get_t_prime(i=start_state , j=end_state ,

num_loops=k[m],
time_no_move=time_before_panel ,
total_possible_time=elapsed_time ,
first_pass_ft = first_pass_ft ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 ,
pars = pars)

}
}

Combine k and t’
result <- rbind(state=z,panel_time=t,sampled_loops=k,

expected_time=t_prime)
cols_to_remove <- which(diff(result [4,]) ==0) + 1

if(ncol(result) %in% cols_to_remove) {
These have some movement if non -zero
how_much_move <- abs(c(0,diff(result [1,]))) + result [3,]
if(sum(how_much_move) >0){

38

start_of_end <- ncol(result) - min(which(rev(how_much_move!=0))) + 1
}else{

start_of_end <- 1
}

end_end <- ncol(result)

result <- cbind(result [,1:start_of_end], result[,end_end])

cols_to_remove <- as.numeric ()
}

If there is no movement , we don ’t need it in the likelihood
if(length(cols_to_remove) >0) {

result <- result[,-cols_to_remove]
}

Rename the expectation matrix
result <- matrix(result , nrow = 4)
rownames(result) <- c("state","panel_time","sampled_loops","expected_time")

return(result)

}

Negative log likelihood function: - sum(log(Pr(K=k)) + log(g) + log(1-H))
neg_log_likelihood <- function(pars_vec , expectations){

names(pars_vec) <- c(’p21’, ’p32’,
’mean12 ’, ’mean23 ’,
’mean34 ’, ’mean32 ’,
’mean21 ’, ’var12 ’,
’var23 ’, ’var34 ’,
’var32 ’,’var21 ’)

Convert incoming parameters into list form
pars_used <- list(p21 = pars_vec[’p21’],

p32 = pars_vec[’p32’],
a12 = pars_vec[’mean12 ’]^2/pars_vec[’var12’],
b12 = pars_vec[’mean12 ’]/pars_vec[’var12’],
a23 = pars_vec[’mean23 ’]^2/pars_vec[’var23’],
b23 = pars_vec[’mean23 ’]/pars_vec[’var23’],
a34 = pars_vec[’mean34 ’]^2/pars_vec[’var34’],
b34 = pars_vec[’mean34 ’]/pars_vec[’var34’],
a32 = pars_vec[’mean32 ’]^2/pars_vec[’var32’],
b32 = pars_vec[’mean32 ’]/pars_vec[’var32’],
a21 = pars_vec[’mean21 ’]^2/pars_vec[’var21’],
b21 = pars_vec[’mean21 ’]/pars_vec[’var21’],
prob_mat = matrix(c(0,1,0,0,

pars_vec[1],0,1-pars_vec[1],0,
0,pars_vec[2],0,1-pars_vec[2],
0,0,0,0), nrow = 4, byrow = TRUE))

PMFs of all possible transitions
f12 <- c(0,diff(pgamma(supp , pars_used$a12 , pars_used$b12)))
f21 <- c(0,diff(pgamma(supp , pars_used$a21 , pars_used$b21)))
f23 <- c(0,diff(pgamma(supp , pars_used$a23 , pars_used$b23)))
f32 <- c(0,diff(pgamma(supp , pars_used$a32 , pars_used$b32)))
f34 <- c(0,diff(pgamma(supp , pars_used$a34 , pars_used$b34)))

FFts of the PMFs
ft12 <- fft(f12)
ft21 <- fft(f21)
ft23 <- fft(f23)

39

ft32 <- fft(f32)
ft34 <- fft(f34)

First -passage distribution calculations (see Warr and Collins , 2018)
first_pass_ft_used <- array(0,c(4,4,N))
first_pass_ft_used[1,1,] <- (ft12*ft21*pars_used$p21) / (1 + ft23*ft32*pars_used

$p21*pars_used$p32 - ft23*ft32*pars_used$p32)
first_pass_ft_used[1,2,] <- ft12
first_pass_ft_used[1,3,] <- (ft12*ft23*(1 - pars_used$p21))/(1 - ft12*ft21*pars_

used$p21)
first_pass_ft_used[1,4,] <- (ft12*(ft23*ft34 - ft23*ft34*pars_used$p21 - ft23*

ft34*pars_used$p32 + ft23*ft34*pars_used$p21*pars_used$p32))/(1 - ft12*ft21*
pars_used$p21 - ft23*ft32*pars_used$p32 + ft23*ft32*pars_used$p21*pars_used$
p32)

first_pass_ft_used[2,1,] <- (((ft21*pars_used$p21*(ft23*ft32*pars_used$p21*pars_
used$p32 - ft23*ft32*pars_used$p32 + 1))/(ft12*ft21*pars_used$p21 + ft23*ft32
*pars_used$p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1) - (ft21*ft23*ft32
*pars_used$p21*pars_used$p32*(pars_used$p21 - 1))/(ft12*ft21*pars_used$p21 +
ft23*ft32*pars_used$p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1))*(ft12*
ft21*pars_used$p21 + ft23*ft32*pars_used$p32 - ft23*ft32*pars_used$p21*pars_
used$p32 - 1))/(ft23*ft32*pars_used$p21*pars_used$p32 - ft23*ft32*pars_used$
p32 + 1)

first_pass_ft_used[2,2,] <- ((ft12*ft21*pars_used$p21)/(ft12*ft21*pars_used$p21
+ ft23*ft32*pars_used$p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1) - (
ft23*ft32*pars_used$p32*(pars_used$p21 - 1))/(ft12*ft21*pars_used$p21 + ft23*
ft32*pars_used$p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1))*(ft12*ft21*
pars_used$p21 + ft23*ft32*pars_used$p32 - ft23*ft32*pars_used$p21*pars_used$
p32 - 1)

first_pass_ft_used[2,3,] <- (((ft21*pars_used$p21*(ft12*ft23 - ft12*ft23*pars_
used$p21))/(ft12*ft21*pars_used$p21 + ft23*ft32*pars_used$p32 - ft23*ft32*
pars_used$p21*pars_used$p32 - 1) + (ft23*(pars_used$p21 - 1)*(ft12*ft21*pars_
used$p21 - 1))/(ft12*ft21*pars_used$p21 + ft23*ft32*pars_used$p32 - ft23*ft32
*pars_used$p21*pars_used$p32 - 1))*(ft12*ft21*pars_used$p21 + ft23*ft32*pars_
used$p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1))/(1 - ft12*ft21*pars_
used$p21)

first_pass_ft_used[2,4,] <- (ft23*ft34*(pars_used$p21 - 1)*(pars_used$p32 - 1)*(
ft12*ft21*pars_used$p21 - 1))/(ft12*ft21*pars_used$p21 + ft23*ft32*pars_used$
p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1) - (ft21*pars_used$p21*(ft12*
ft23*ft34 - ft12*ft23*ft34*pars_used$p21 - ft12*ft23*ft34*pars_used$p32 +
ft12*ft23*ft34*pars_used$p21*pars_used$p32))/(ft12*ft21*pars_used$p21 + ft23*
ft32*pars_used$p32 - ft23*ft32*pars_used$p21*pars_used$p32 - 1)

first_pass_ft_used[3,1,] <- (ft21*ft32*pars_used$p21*pars_used$p32)/(ft23*ft32*
pars_used$p21*pars_used$p32 - ft23*ft32*pars_used$p32 + 1)

first_pass_ft_used[3,2,] <- ft32*pars_used$p32
first_pass_ft_used[3,3,] <- (ft23*ft32*pars_used$p32*(1 - pars_used$p21))/(1 -

ft12*ft21*pars_used$p21)
first_pass_ft_used[3,4,] <- ft34*(pars_used$p32 - 1) - (ft32*pars_used$p32*(ft23

*ft34 - ft23*ft34*pars_used$p21 - ft23*ft34*pars_used$p32 + ft23*ft34*pars_
used$p21*pars_used$p32))/(1 - ft12*ft21*pars_used$p21 - ft23*ft32*pars_used$
p32 + ft23*ft32*pars_used$p21*pars_used$p32)

the v and g portions of the likelihood (after taking log)
k_like <- lapply(expectations , function(x) rep(NA ,ncol(x) -1))
g_like <- lapply(expectations , function(x) rep(NA ,ncol(x) -1))
h_like <- lapply(expectations , function(x) rep(NA ,ncol(x) -1))

For each expectation set
for(n_phi in 1: length(expectations)){

Extract useful info
z <- expectations [[n_phi]][1 ,]
t <- expectations [[n_phi]][2 ,]
k <- expectations [[n_phi]][3 ,]
t_prime <- expectations [[n_phi]][4 ,]

40

For each panel observation set (that has sampled movement)
for(m in seq_along(z)[-1]){

start_state <- z[m-1]
end_state <- z[m]
time <- t_prime[m]-t_prime[m-1]
total_time <- t[m] - t_prime[m-1]
time_no_move <- t[m-1] - t_prime[m-1]

probabilities for K
k_probs <- get_probs(i=start_state , j=end_state , time_no_move=time_no_move ,

total_time=total_time , first_pass_ft = first_pass_ft_used ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 , pars = pars_used)

k_like[[n_phi]][m-1] <- log(max(k_probs[which(names(k_probs) == k[m])], .
Machine$double.eps))

if(start_state == end_state & k[m] == 0){
g_like[[n_phi]][m-1] <- 0
h_like[[n_phi]][m-1] <- 0

} else{
G portions of the likelihood
g_like[[n_phi]][m-1] <- get_g_val(i=start_state , j=end_state ,

num_loops=k[m], time_no_move = time_no_
move ,

total_time = total_time , time = time ,
first_pass_ft = first_pass_ft_used ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 , pars =

pars_used)
H portions of the likelihood
h_like[[n_phi]][m-1] <- get_h_val(i=start_state , j=end_state ,

num_loops=k[m], time_no_move = time_no_
move ,

total_time = total_time , time = time ,
first_pass_ft = first_pass_ft_used ,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=p32 , pars =

pars_used)
}

}
}

Combine the different elements of the likelihood
out <- 0
out <- out - sum(unlist(k_like))
out <- out - sum(unlist(g_like))
out <- out - sum(unlist(h_like))

if(is.na(out) | abs(out) == Inf){
out <- 10000000

}
return(out)

}

Parallelization for the m step
cl <- makeCluster (6) # set the number of processor cores
setDefaultCluster(cl=cl) # set ’cl ’ as default cluster

Function that completes maximization step
get_new_parameters <- function(pars = EDA_pars ,

41

expectations = lapply(panel_data [1:25] ,
get_single_expectation)){

Reparameterizing for means and variances
means <- c(mean12 = pars$a12/pars$b12 ,

mean23 = pars$a23/pars$b23 ,
mean34 = pars$a34/pars$b34 ,
mean32 = pars$a32/pars$b32 ,
mean21 = pars$a21/pars$b21)

variances <- c(var12 = pars$a12/pars$b12^2,
var23 = pars$a23/pars$b23^2,
var34 = pars$a34/pars$b34^2,
var32 = pars$a32/pars$b32^2,
var21 = pars$a21/pars$b21^2)

vectorized_pars <- c(unlist(pars)[1:2] , means , variances)

names(vectorized_pars) <- c(’p21’, ’p32’,
’mean12 ’, ’mean23 ’, ’mean34 ’,
’mean32 ’, ’mean21 ’,
’var12 ’, ’var23 ’, ’var34 ’,
’var32 ’,’var21 ’)

clusterExport(cl , c("neg_log_likelihood", "supp",
"N", "expectations", "get_probs",
"get_H", "get_G", "%>%", "get_g_val",
"num_evaluations", "get_h_val"))

Maximizing the likelihood to get the best parameters
new_pars_vec <- optimParallel(vectorized_pars ,

function(x) neg_log_likelihood(x, expectations),
lower = rep(.001 , length(vectorized_pars)),
upper = c(rep (.999 ,2),rep (100 ,5),rep (200 ,5)),
control = list(factr=1e16 , parscale=vectorized_

pars),
method = "L-BFGS -B")$par

Reparameterizing for shapes and rates
list(p21 = new_pars_vec[’p21’],

p32 = new_pars_vec[’p32’],
a12 = new_pars_vec[’mean12 ’]^2/new_pars_vec[’var12’],
b12 = new_pars_vec[’mean12 ’]/new_pars_vec[’var12’],
a23 = new_pars_vec[’mean23 ’]^2/new_pars_vec[’var23’],
b23 = new_pars_vec[’mean23 ’]/new_pars_vec[’var23’],
a34 = new_pars_vec[’mean34 ’]^2/new_pars_vec[’var34’],
b34 = new_pars_vec[’mean34 ’]/new_pars_vec[’var34’],
a32 = new_pars_vec[’mean32 ’]^2/new_pars_vec[’var32’],
b32 = new_pars_vec[’mean32 ’]/new_pars_vec[’var32’],
a21 = new_pars_vec[’mean21 ’]^2/new_pars_vec[’var21’],
b21 = new_pars_vec[’mean21 ’]/new_pars_vec[’var21’],
prob_mat = matrix(c(0,1,0,0,

new_pars_vec[1],0,1-new_pars_vec[1],0,
0,new_pars_vec[2],0,1-new_pars_vec[2],
0,0,0,0), nrow = 4, byrow = TRUE))

}

#start_pars <- EDA_pars
start_pars <- list(p21 = .5,

p32 = .8,
a12 = 5.5,
b12 = .5,
a21 = 6.5,
b21 = .5,

42

a23 = 2.5,
b23 = .2,
a32 = 7,
b32 = 1,
a34 = 1,
b34 = .1,
prob_mat = matrix(c(0,1,0,0,

.5,0,.5,0,
0,.5,0,.5,
0,0,0,0), ncol = 4, byrow = TRUE))

pars <- start_pars
Phi <- 1
loop <- 1
delta_1 <- .001
delta_2 <- .05
overall_start <- proc.time()

all_par_ests <- c()

converged <- converged_1 <- converged_2 <- converged_3 <- FALSE

SEM Algorithm
while(!converged){

overall_loop_start <- proc.time()
cat(paste(rep("-" ,10), collapse= ""))
cat(sprintf("\nLoop %s\n",loop))
cat(paste(rep("-" ,10), collapse= ""))
cat("\nSetting up Parameters ...")
PMFs of all possible transitions
f12 <- c(0,diff(pgamma(supp , pars$a12 , pars$b12)))
f21 <- c(0,diff(pgamma(supp , pars$a21 , pars$b21)))
f23 <- c(0,diff(pgamma(supp , pars$a23 , pars$b23)))
f32 <- c(0,diff(pgamma(supp , pars$a32 , pars$b32)))
f34 <- c(0,diff(pgamma(supp , pars$a34 , pars$b34)))

FFts of the PMFs
ft12 <- fft(f12)
ft21 <- fft(f21)
ft23 <- fft(f23)
ft32 <- fft(f32)
ft34 <- fft(f34)

Put FFTs of PMFs in the matrix format
dist_ft <- array(0,c(4,4,N))
dist_ft[1,2,] <- ft12
dist_ft[2,1,] <- ft21
dist_ft[2,3,] <- ft23
dist_ft[3,2,] <- ft32
dist_ft[3,4,] <- ft34

First -passage distributions in matrix format
first_pass_ft <- array(0,c(4,4,N))
ID <- diag (4)

for(i in 1:N){
QMAT <- pars$prob_mat * dist_ft[,,i]
first_pass_ft[,,i] <- QMAT %*% solve(ID -QMAT , solve(ID * solve(ID -QMAT)))

}
cat(" Done.\n")

E Step
expectations <- list()
expectations_start <- proc.time()

43

cntr <- 1
cat("Performing E Step ...")
#pb <- txtProgressBar(min = 0, max = length(panel_data)*Phi , style = 3)
for(i in 1: length(panel_data)){

for(phi in 1:Phi){
#setTxtProgressBar(pb , cntr)
expectations [[cntr]] <- get_single_expectation(patient_data = panel_data[[i

]],
first_pass_ft = first_pass_ft

,
f12=f12 , f23=f23 , f34=f34 ,
f32=f32 ,f21=f21 ,p21=p21 ,p32=

p32 ,
pars = pars)

cntr <- cntr + 1
}

}
cat(sprintf(" Done. E Step took %3.4f minutes",

(proc.time() - expectations_start)[3]/60))

M step
maximization_step <- proc.time()
cat("\nPerforming M Step ...")
prev_pars <- pars
num_evaluations <<- 0
pars <- get_new_parameters(prev_pars , expectations)
num_evaluations <- M_results$num_evals
cat(sprintf(" Done. M Step took %3.4f minutes (with %s likelihood evaluations)\n

",
(proc.time() - maximization_step)[3]/60, num_evaluations))

summary_pars <- c(p21 = pars$p21 , p32 = pars$p32 ,
Mean_12 = pars$a12/pars$b12 ,
Mean_23 = pars$a23/pars$b23 ,
Mean_34 = pars$a34/pars$b34 ,
Mean_32 = pars$a32/pars$b32 ,
Mean_21 = pars$a21/pars$b21 ,
Var_12 = pars$a12/pars$b12^2,
Var_23 = pars$a23/pars$b23^2,
Var_34 = pars$a34/pars$b34^2,
Var_32 = pars$a32/pars$b32^2,
Var_21 = pars$a21/pars$b21 ^2)

names(summary_pars) <- c(’p21’, ’p32’,
’mean12 ’, ’mean23 ’, ’mean34 ’, ’mean32 ’, ’mean21 ’,
’var12’, ’var23’, ’var34 ’, ’var32 ’,’var21 ’)

cat(sprintf("Current NEGATIVE Log -Likelihood: %3.4f\n",
neg_log_likelihood(summary_pars , expectations)))

#Phi <- Phi + 1
loop <- loop + 1
converged_3 <- converged_2
converged_2 <- converged_1
conv_level <- max(abs((unlist(pars)[1:12] - unlist(prev_pars)[1:12])/

(unlist(prev_pars)[1:12] + delta_1)))
converged_1 <- conv_level < delta_2
converged <- converged_1 * converged_2 * converged_3
cat(sprintf("Convergence level (<%3.4f for 3 iterations): %3.4f\n",

delta_2, conv_level))
cat(sprintf("Current EM Loop time: %3.4f minutes\n",

(proc.time() - overall_loop_start)[3]/60))
cat(sprintf("Total Time: %3.4f minutes\n",

(proc.time() - overall_start)[3]/60))
cat("Parameter Update :\n")
print(summary_pars)

44

all_par_ests <- rbind(all_par_ests , summary_pars)

cat("\n\n\n")
}

Displaying final output
cat(paste(rep("-" ,10), collapse= ""))
cat("\nInitial Parameter Estimates: \n")
summary_start_pars <- c(p21 = start_pars$p21 , p32 = start_pars$p32 ,

Mean_12 = start_pars$a12/start_pars$b12 ,
Mean_23 = start_pars$a23/start_pars$b23 ,
Mean_34 = start_pars$a34/start_pars$b34 ,
Mean_32 = start_pars$a32/start_pars$b32 ,
Mean_21 = start_pars$a21/start_pars$b21 ,
Var_12 = start_pars$a12/start_pars$b12^2,
Var_23 = start_pars$a23/start_pars$b23^2,
Var_34 = start_pars$a34/start_pars$b34^2,
Var_32 = start_pars$a32/start_pars$b32^2,
Var_21 = start_pars$a21/start_pars$b21^2)

print(summary_start_pars)
cat("\n\nFinal Parameter Estimates: \n")
print(summary_pars)
cat("\n")
cat(paste(rep("-" ,10), collapse= ""))

all_par_ests <- rbind(summary_start_pars , all_par_ests)

save(all_par_ests , file = "results.Rdata")

45

	Title
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Literature Review

	2 Methodology
	2.1 Improved Stochastic Expectation-Maximization Algorithm
	2.2 Computation via the FFT

	3 Results
	3.1 Preliminary Simulation Study
	3.2 Diabetic Retinopathy Study

	4 Discussion
	4.1 Future Work

	Bibliography
	Appendices
	Appendix A: Code

